您当前的位置: 首页 >> 热点 > >> 正文

我在树莓派上跑通了bert模型,使用numpy实现bert模型,使用hugging face 或pytorch训练模型,保存参数为numpy格式,然后使用numpy加载模型推理 当前报道

来源:博客园 2023-07-01 05:21:41发布
x


(资料图片)

之前分别用numpy实现了mlp,cnn,lstm,这次搞一个大一点的模型bert,纯numpy实现,最重要的是可在树莓派上或其他不能安装pytorch的板子上运行,推理数据

本次模型是随便在hugging face上找的一个新闻评论的模型,7分类

看这些模型参数,这并不重要,模型占硬盘空间都要400+M

bert.embeddings.word_embeddings.weight torch.Size([21128, 768])bert.embeddings.position_embeddings.weight torch.Size([512, 768])bert.embeddings.token_type_embeddings.weight torch.Size([2, 768])bert.embeddings.LayerNorm.weight torch.Size([768])bert.embeddings.LayerNorm.bias torch.Size([768])bert.encoder.layer.0.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.0.attention.self.query.bias torch.Size([768])bert.encoder.layer.0.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.0.attention.self.key.bias torch.Size([768])bert.encoder.layer.0.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.0.attention.self.value.bias torch.Size([768])bert.encoder.layer.0.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.0.attention.output.dense.bias torch.Size([768])bert.encoder.layer.0.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.0.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.0.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.0.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.0.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.0.output.dense.bias torch.Size([768])bert.encoder.layer.0.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.0.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.1.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.1.attention.self.query.bias torch.Size([768])bert.encoder.layer.1.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.1.attention.self.key.bias torch.Size([768])bert.encoder.layer.1.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.1.attention.self.value.bias torch.Size([768])bert.encoder.layer.1.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.1.attention.output.dense.bias torch.Size([768])bert.encoder.layer.1.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.1.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.1.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.1.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.1.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.1.output.dense.bias torch.Size([768])bert.encoder.layer.1.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.1.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.2.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.2.attention.self.query.bias torch.Size([768])bert.encoder.layer.2.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.2.attention.self.key.bias torch.Size([768])bert.encoder.layer.2.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.2.attention.self.value.bias torch.Size([768])bert.encoder.layer.2.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.2.attention.output.dense.bias torch.Size([768])bert.encoder.layer.2.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.2.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.2.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.2.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.2.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.2.output.dense.bias torch.Size([768])bert.encoder.layer.2.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.2.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.3.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.3.attention.self.query.bias torch.Size([768])bert.encoder.layer.3.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.3.attention.self.key.bias torch.Size([768])bert.encoder.layer.3.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.3.attention.self.value.bias torch.Size([768])bert.encoder.layer.3.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.3.attention.output.dense.bias torch.Size([768])bert.encoder.layer.3.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.3.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.3.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.3.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.3.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.3.output.dense.bias torch.Size([768])bert.encoder.layer.3.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.3.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.4.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.4.attention.self.query.bias torch.Size([768])bert.encoder.layer.4.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.4.attention.self.key.bias torch.Size([768])bert.encoder.layer.4.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.4.attention.self.value.bias torch.Size([768])bert.encoder.layer.4.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.4.attention.output.dense.bias torch.Size([768])bert.encoder.layer.4.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.4.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.4.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.4.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.4.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.4.output.dense.bias torch.Size([768])bert.encoder.layer.4.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.4.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.5.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.5.attention.self.query.bias torch.Size([768])bert.encoder.layer.5.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.5.attention.self.key.bias torch.Size([768])bert.encoder.layer.5.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.5.attention.self.value.bias torch.Size([768])bert.encoder.layer.5.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.5.attention.output.dense.bias torch.Size([768])bert.encoder.layer.5.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.5.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.5.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.5.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.5.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.5.output.dense.bias torch.Size([768])bert.encoder.layer.5.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.5.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.6.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.6.attention.self.query.bias torch.Size([768])bert.encoder.layer.6.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.6.attention.self.key.bias torch.Size([768])bert.encoder.layer.6.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.6.attention.self.value.bias torch.Size([768])bert.encoder.layer.6.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.6.attention.output.dense.bias torch.Size([768])bert.encoder.layer.6.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.6.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.6.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.6.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.6.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.6.output.dense.bias torch.Size([768])bert.encoder.layer.6.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.6.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.7.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.7.attention.self.query.bias torch.Size([768])bert.encoder.layer.7.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.7.attention.self.key.bias torch.Size([768])bert.encoder.layer.7.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.7.attention.self.value.bias torch.Size([768])bert.encoder.layer.7.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.7.attention.output.dense.bias torch.Size([768])bert.encoder.layer.7.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.7.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.7.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.7.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.7.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.7.output.dense.bias torch.Size([768])bert.encoder.layer.7.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.7.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.8.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.8.attention.self.query.bias torch.Size([768])bert.encoder.layer.8.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.8.attention.self.key.bias torch.Size([768])bert.encoder.layer.8.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.8.attention.self.value.bias torch.Size([768])bert.encoder.layer.8.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.8.attention.output.dense.bias torch.Size([768])bert.encoder.layer.8.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.8.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.8.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.8.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.8.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.8.output.dense.bias torch.Size([768])bert.encoder.layer.8.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.8.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.9.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.9.attention.self.query.bias torch.Size([768])bert.encoder.layer.9.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.9.attention.self.key.bias torch.Size([768])bert.encoder.layer.9.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.9.attention.self.value.bias torch.Size([768])bert.encoder.layer.9.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.9.attention.output.dense.bias torch.Size([768])bert.encoder.layer.9.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.9.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.9.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.9.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.9.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.9.output.dense.bias torch.Size([768])bert.encoder.layer.9.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.9.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.10.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.10.attention.self.query.bias torch.Size([768])bert.encoder.layer.10.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.10.attention.self.key.bias torch.Size([768])bert.encoder.layer.10.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.10.attention.self.value.bias torch.Size([768])bert.encoder.layer.10.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.10.attention.output.dense.bias torch.Size([768])bert.encoder.layer.10.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.10.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.10.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.10.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.10.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.10.output.dense.bias torch.Size([768])bert.encoder.layer.10.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.10.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.11.attention.self.query.weight torch.Size([768, 768])bert.encoder.layer.11.attention.self.query.bias torch.Size([768])bert.encoder.layer.11.attention.self.key.weight torch.Size([768, 768])bert.encoder.layer.11.attention.self.key.bias torch.Size([768])bert.encoder.layer.11.attention.self.value.weight torch.Size([768, 768])bert.encoder.layer.11.attention.self.value.bias torch.Size([768])bert.encoder.layer.11.attention.output.dense.weight torch.Size([768, 768])bert.encoder.layer.11.attention.output.dense.bias torch.Size([768])bert.encoder.layer.11.attention.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.11.attention.output.LayerNorm.bias torch.Size([768])bert.encoder.layer.11.intermediate.dense.weight torch.Size([3072, 768])bert.encoder.layer.11.intermediate.dense.bias torch.Size([3072])bert.encoder.layer.11.output.dense.weight torch.Size([768, 3072])bert.encoder.layer.11.output.dense.bias torch.Size([768])bert.encoder.layer.11.output.LayerNorm.weight torch.Size([768])bert.encoder.layer.11.output.LayerNorm.bias torch.Size([768])bert.pooler.dense.weight torch.Size([768, 768])bert.pooler.dense.bias torch.Size([768])classifier.weight torch.Size([7, 768])classifier.bias torch.Size([7])

为了实现numpy的bert模型,踩了两天的坑,一步步对比huggingface源码实现的,真的太难了~~~

这是使用numpy实现的bert代码,分数上和huggingface有稍微的一点点区别,可能是模型太大,保存的模型参数误差累计造成的!

看下面的代码真的有利于直接了解bert模型结构,各种细节简单又到位,自己都服自己,研究这个东西~~~

import numpy as npdef word_embedding(input_ids, word_embeddings):    return word_embeddings[input_ids]def position_embedding(position_ids, position_embeddings):    return position_embeddings[position_ids]def token_type_embedding(token_type_ids, token_type_embeddings):    return token_type_embeddings[token_type_ids]def softmax(x, axis=None):    # e_x = np.exp(x).astype(np.float32) #      e_x = np.exp(x - np.max(x, axis=axis, keepdims=True))    sum_ex = np.sum(e_x, axis=axis,keepdims=True).astype(np.float32)    return e_x / sum_exdef scaled_dot_product_attention(Q, K, V, mask=None):    d_k = Q.shape[-1]    scores = np.matmul(Q, K.transpose(0, 2, 1)) / np.sqrt(d_k)    if mask is not None:        scores = np.where(mask, scores, np.full_like(scores, -np.inf))    attention_weights = softmax(scores, axis=-1)    # print(attention_weights)    # print(np.sum(attention_weights,axis=-1))    output = np.matmul(attention_weights, V)    return output, attention_weightsdef multihead_attention(input, num_heads,W_Q,B_Q,W_K,B_K,W_V,B_V,W_O,B_O):    q = np.matmul(input, W_Q.T)+B_Q    k = np.matmul(input, W_K.T)+B_K    v = np.matmul(input, W_V.T)+B_V    # 分割输入为多个头    q = np.split(q, num_heads, axis=-1)    k = np.split(k, num_heads, axis=-1)    v = np.split(v, num_heads, axis=-1)    outputs = []    for q_,k_,v_ in zip(q,k,v):        output, attention_weights = scaled_dot_product_attention(q_, k_, v_)        outputs.append(output)    outputs = np.concatenate(outputs, axis=-1)    outputs = np.matmul(outputs, W_O.T)+B_O    return outputsdef layer_normalization(x, weight, bias, eps=1e-12):    mean = np.mean(x, axis=-1, keepdims=True)    variance = np.var(x, axis=-1, keepdims=True)    std = np.sqrt(variance + eps)    normalized_x = (x - mean) / std    output = weight * normalized_x + bias    return outputdef feed_forward_layer(inputs, weight, bias, activation="relu"):    linear_output = np.matmul(inputs,weight) + bias        if activation == "relu":        activated_output = np.maximum(0, linear_output)  # ReLU激活函数    elif activation == "gelu":        activated_output = 0.5 * linear_output * (1 + np.tanh(np.sqrt(2 / np.pi) * (linear_output + 0.044715 * np.power(linear_output, 3))))  # GELU激活函数        elif activation == "tanh" :        activated_output = np.tanh(linear_output)    else:        activated_output = linear_output  # 无激活函数        return activated_outputdef residual_connection(inputs, residual):    # 残差连接    residual_output = inputs + residual    return residual_outputdef tokenize_sentence(sentence, vocab_file = "vocab.txt"):    with open(vocab_file, "r", encoding="utf-8") as f:        vocab = f.readlines()        vocab = [i.strip() for i in vocab]        # print(len(vocab))    tokenized_sentence = ["[CLS]"] + list(sentence) + ["[SEP]"] # 在句子开头添加[cls]    token_ids = [vocab.index(token) for token in tokenized_sentence]    return token_ids# 加载保存的模型数据model_data = np.load("bert_model_params.npz")word_embeddings = model_data["bert.embeddings.word_embeddings.weight"]position_embeddings = model_data["bert.embeddings.position_embeddings.weight"]token_type_embeddings = model_data["bert.embeddings.token_type_embeddings.weight"]def model_input(sentence):    token_ids = tokenize_sentence(sentence)    input_ids = np.array(token_ids)  # 输入的词汇id    word_embedded = word_embedding(input_ids, word_embeddings)    position_ids = np.array(range(len(input_ids)))  # 位置id    # 位置嵌入矩阵,形状为 (max_position, embedding_size)    position_embedded = position_embedding(position_ids, position_embeddings)    token_type_ids = np.array([0]*len(input_ids))  # 片段类型id    # 片段类型嵌入矩阵,形状为 (num_token_types, embedding_size)    token_type_embedded = token_type_embedding(token_type_ids, token_type_embeddings)    embedding_output = np.expand_dims(word_embedded + position_embedded + token_type_embedded, axis=0)    return embedding_outputdef bert(input,num_heads):    ebd_LayerNorm_weight = model_data["bert.embeddings.LayerNorm.weight"]    ebd_LayerNorm_bias = model_data["bert.embeddings.LayerNorm.bias"]    input = layer_normalization(input,ebd_LayerNorm_weight,ebd_LayerNorm_bias)     #这里和模型输出一致    for i in range(12):        # 调用多头自注意力函数        W_Q = model_data["bert.encoder.layer.{}.attention.self.query.weight".format(i)]        B_Q = model_data["bert.encoder.layer.{}.attention.self.query.bias".format(i)]        W_K = model_data["bert.encoder.layer.{}.attention.self.key.weight".format(i)]        B_K = model_data["bert.encoder.layer.{}.attention.self.key.bias".format(i)]        W_V = model_data["bert.encoder.layer.{}.attention.self.value.weight".format(i)]        B_V = model_data["bert.encoder.layer.{}.attention.self.value.bias".format(i)]        W_O = model_data["bert.encoder.layer.{}.attention.output.dense.weight".format(i)]        B_O = model_data["bert.encoder.layer.{}.attention.output.dense.bias".format(i)]        attention_output_LayerNorm_weight = model_data["bert.encoder.layer.{}.attention.output.LayerNorm.weight".format(i)]        attention_output_LayerNorm_bias = model_data["bert.encoder.layer.{}.attention.output.LayerNorm.bias".format(i)]        intermediate_weight = model_data["bert.encoder.layer.{}.intermediate.dense.weight".format(i)]        intermediate_bias = model_data["bert.encoder.layer.{}.intermediate.dense.bias".format(i)]        dense_weight = model_data["bert.encoder.layer.{}.output.dense.weight".format(i)]        dense_bias = model_data["bert.encoder.layer.{}.output.dense.bias".format(i)]        output_LayerNorm_weight = model_data["bert.encoder.layer.{}.output.LayerNorm.weight".format(i)]        output_LayerNorm_bias = model_data["bert.encoder.layer.{}.output.LayerNorm.bias".format(i)]        output = multihead_attention(input, num_heads,W_Q,B_Q,W_K,B_K,W_V,B_V,W_O,B_O)        output = residual_connection(input,output)        output1 = layer_normalization(output,attention_output_LayerNorm_weight,attention_output_LayerNorm_bias)    #这里和模型输出一致        output = feed_forward_layer(output1, intermediate_weight.T, intermediate_bias, activation="gelu")        output = feed_forward_layer(output, dense_weight.T, dense_bias, activation="")        output = residual_connection(output1,output)        output2 = layer_normalization(output,output_LayerNorm_weight,output_LayerNorm_bias)   #一致                input = output2    bert_pooler_dense_weight = model_data["bert.pooler.dense.weight"]    bert_pooler_dense_bias = model_data["bert.pooler.dense.bias"]    output = feed_forward_layer(output2, bert_pooler_dense_weight.T, bert_pooler_dense_bias, activation="tanh")    #一致    return output# for i in model_data:#     # print(i)#     print(i,model_data[i].shape)id2label = {0: "mainland China politics", 1: "Hong Kong - Macau politics", 2: "International news", 3: "financial news", 4: "culture", 5: "entertainment", 6: "sports"}classifier_weight = model_data["classifier.weight"]classifier_bias = model_data["classifier.bias"]if __name__ == "__main__":    sentences = ["马拉松比赛","香港有群众游行示威","党中央决定制定爱国教育法","俄罗斯和欧美对抗","人民币汇率贬值","端午节吃粽子","大妈们跳广场舞"]    while True:        # 示例用法        for sentence in sentences:            # print(model_input(sentence).shape)            output = bert(model_input(sentence),num_heads=12)            # print(output)            output = feed_forward_layer(output[:,0,:], classifier_weight.T, classifier_bias, activation="")            # print(output)            output = softmax(output,axis=-1)            label_id = np.argmax(output,axis=-1)            label_score = output[0][label_id]            print("sentence:",sentence,"\tlabels:",id2label[label_id[0]],"\tscore:",label_score)

这是hugging face上找的一个别人训练好的模型,roberta模型作新闻7分类,并且保存模型结构为numpy格式,为了上面的代码加载

import numpy as npfrom transformers import AutoModelForSequenceClassification,AutoTokenizer,pipelinemodel = AutoModelForSequenceClassification.from_pretrained("uer/roberta-base-finetuned-chinanews-chinese")tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-chinanews-chinese")text_classification = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)print(text_classification("马拉松决赛"))# print(model)# 打印BERT模型的权重维度for name, param in model.named_parameters():    print(name, param.data.shape)# # # 保存模型参数为NumPy格式model_params = {name: param.data.cpu().numpy() for name, param in model.named_parameters()}np.savez("bert_model_params.npz", **model_params)# model_params

对比两个结果:

hugging face:[{"label": "sports", "score": 0.9929242134094238}]numpy:sports [0.9928773]
上一篇 下一篇
x
推荐阅读 更多

我在树莓派上跑通了bert模型,使用numpy实现bert模型,使用hugging face 或pytorch训练模型,保存参数为numpy格式,然后使用numpy加载模型推理 当前报道

博客园 2023-07-01

官大堰村_天天通讯

互联网 2023-07-01

5年前的今天:姆巴佩大罗附体+帕瓦尔凌空斩,法国4-3淘汰阿根廷

直播吧 2023-07-01

天天热文:兆邦基地产(01660.HK)年度公司拥有人应占亏损4098.5万港元

市场资讯 2023-06-30

一等奖是它!潮新闻吉祥物评选结果出炉 环球快播

潮新闻客户端 2023-06-30

没有美貌、没有智慧?做好这一点,一样招“桃花运”

搜狐 2023-06-30

大湾区之声热评:国安法保驾护航 香港定风光无限

光明网 2023-06-30

全球新消息丨小黄鱼是什么(小黄鱼是什么)

热点网 2023-06-30

融通新消费灵活配置混合基金:解聘基金经理余志勇、黄浩荣|头条焦点

证券时报网 2023-06-30

清新灵动的水蓝色,龙葵洋娃娃带你走进神话世界

哔哩哔哩 2023-06-30